

Role of the Spacer in the Singlet-Singlet Energy Transfer Mechanism (Förster vs Dexter) in Cofacial Bisporphyrins

Sébastien Faure,^{†,‡} Christine Stern,[†] Roger Guilard,^{*,†} and Pierre D. Harvey^{*,‡}

Contribution from the LIMSAG UMR 5633, Université de Bourgogne, 6 bd Gabriel, 21100 Dijon, France, and Département de Chimie de l'Université de Sherbrooke, Sherbrooke J1K2R1 Québec, Canada

Received August 18, 2003; E-mail: roger.guilard@u-bourgogne.fr; p.harvey@usherbrooke.ca

Abstract: The cofacial bisporphyrins H₄DPS (DPS = 4,6-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]dibenzothiophene), H₄DPO (DPO = 4,6-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]dibenzofuran), H₄DPX (DPX = 4,5-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]-9,9-dimethylxanthene), H4DPA (DPA = 1,8-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]anthracene), and H₄DPB (DPB = 1,8-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]biphenylene) have been monometalated by Zn(OAc)₂·2H₂O and by GaCl₃ to explore the singlet-singlet energy transfer from the photoexcited metal porphyrin center to the linked free base porphyrin. The spectroscopic (UV-vis and fluorescence) and photophysical properties (fluorescence lifetimes, $\tau_{\rm F}$, and quantum yields, $\Phi_{\rm F}$) have been investigated at 298 and 77 K in degassed 2-MeTHF for the donor-acceptor systems, (Zn)-H₂DPS, (Zn)H₂DPO, (Zn)H₂DPA, (Zn)H₂DPX, and (Zn)H₂DPB, as well as for the bis-zinc complexes, (Zn)₂DPS, (Zn)₂DPO, (Zn)₂DPX, and (Zn)₂DPB, respectively, and the monoporphyrin derivatives, H₂P, (Zn)P, and (Ga-OMe)P (P²⁻ = 5-phenyl-2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrin-dianion). The singletsinglet energy transfer rate constants (K_{ET}) were obtained using $K_{\text{ET}} = (1/\tau_{\text{F}} - 1/\tau_{\text{F}}^{\circ})$, where τ_{F}° is the fluorescence lifetime of the corresponding bis-zinc(II) systems (or (Zn)P and (Ga-OMe)P) where no energy transfer occurs. The $\tau_{\rm F}$ value for three bis-zinc(II) compounds varies from 1.69 to 2.01 ns and is 1.84 (at 298 K) and 3.20 ns (at 77 K) for (Ga-OMe)P. In the donor-acceptor bismacrocycles, depending on the spacer and the temperature, the fluorescence lifetimes decrease down to 50-240 ps. The K_{ET} values range from \sim 4 to \sim 21 (ns⁻¹) and have been analyzed considering both the Förster and the Dexter mechanisms. Using the C_{meso}-C_{meso} distance parameters in the calculations, the Förster and Dexter mechanisms operate for DPS and DPO, and for DPA, DPX, and DPB spacer systems, respectively. The limit distance where one mechanism dominates over the other is estimated to be around 5–6 Å.

Introduction

A clear understanding of energy transfer processes between porphyrin macrocycles in biological systems is essential for designing efficient light-harvesting systems,¹ notably when the process (antenna effect) operates in the primary stage of the photochemical events.²⁻⁶ Many reviews on the topics in this area already exist.⁷⁻⁹ The energy transfer may occur via short

- [‡] Université de Sherbrooke.
- (1) Jordan, P.; Fromme, P.; Witt, H. T.; Klukas, O.; Seanger, W.; Krauss, N. *Nature (London, U. K.)* **2001**, *411*, 909–917.
- (2) Prathapan, S.; Johnson, T. E.; Lindsey, J. S. J. Am. Chem. Soc. 1993, 115, 7519-7520.
- (3) Kodis, G.; Liddell, P. A.; de la Garza, L.; Clausen, P. C.; Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. J. Phys. Chem. A 2002, 106, 2036-2048.
- (4) Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, K. J. Am. Chem. Soc. 2000, 122, 6535-6551.
- (5) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 1993, 26, 198-205

- Harvey, P. D. In The Porphyrin Handbook II; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2003; Vol. 18, pp 63-250
- (8)Aratani, N.; Osuka, A.; Cho, H. S.; Kim, D. J. Photochem. Photobiol., C **2002**, *3*, 25–52.

(Dexter)¹⁰ and long distance interactions (Förster).^{11,12} Based on the literature,⁷ the field of singlet-singlet energy transfer for bisporphyrin systems indicates that the dominant mechanism is Förster. This particularity is explained by the fact that most investigated systems so far include a donor held to an acceptor using a spacer that keeps these chromophores at long distances, favoring this mechanism. One of the greatest challenges in this area is to estimate where one mechanism switches to the other as the dominating process when the distance is varied in a systematic manner, without variation of other structural parameters as possible. Although literature on porphyrin donor-spacer-porphyrin acceptor systems is relatively rich in this area, the use of a spacer favoring the cofacial geometry is rather rare.⁷ Such a structure should strongly promote short distance interactions (favoring the Dexter process), but the dipole-dipole interactions (Förster) are still effective.^{13,14} The

[†] Université de Bourgogne.

⁽⁶⁾ Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40-48.

⁽⁹⁾ Wasielewski, M. R. Chem. Rev. 1992, 92, 435-461.

⁽¹⁰⁾ Dexter, D. L. J. Chem. Phys. 1953, 21, 836-850.

 ⁽¹⁰⁾ Dexter, D. D. J. Chem. 1935, 215, 21, 850–850.
 (11) Förster, T. Naturwissenschaften 1946, 33, 165–175.
 (12) Förster, T. T. Ann. Phys. 1948, 2, 55–73.
 (13) Turro, N. J. Modern Molecular Photochemistry; University Science Books: Sausalito, CA, 1991.

Table 1. Comparison of the UV-Vis Absorption Data of the Mono- and Bisporphyrin Compounds^a

	$\lambda_{ m max}$ (nm) ($\epsilon imes$ 10 ⁻³ M ⁻¹ cm ⁻¹)						
compound	Soret region		Q-ba				
H ₂ P	402 (154)	502 (15)	532 (8)	578 (6)	626 (4)		
(Zn)P	410 (270)	540 (18)		576 (11)			
(Ga-OMe)P	408 (157)	538 (6)		576 (5)			
H ₄ DPS	398 (309.9)	502 (29.6)	536 (15.0)	570 (14.2)	622 (6.8)		
$(Zn)H_2DPS$	402 (340.6)	502 (15.6)	534 (21.7)	570 (20.9)	624 (3.1)		
(Zn) ₂ DPS	402 (473.6)	536 (32)		572 (29)			
(Ga-OMe)H ₂ DPS	402 (361.7)	502 (11.7)	536 (20.3)	574 (17.7)	622 (1.8)		
H ₄ DPO	396 (260)	502 (24)	536 (12.0)	572 (1.1)	624 (5.0)		
$(Zn)H_2DPO$	400 (383.5)	502 (15.7)	534 (22.2)	570 (21.6)	622 (2.7)		
$(Zn)_2 DPO^{17}$	400 (512)	534 (30.6)		571 (29.6)			
(Ga-OMe)H ₂ DPO	402 (252.7)	502 (11.0)	536 (14.8)	574 (13.9)	622 (2.8)		
H ₄ DPA	395 (190.5)	506 (14.1)	539 (5.1)	578 (6.0)	631 (3.3)		
$(Zn)H_2DPA^{41}$	399 (196.6)	507 (7.0)	539 (10.5)	575 (11.6)	630 (1.3)		
H_4DPX	380 (200)	508 (12.0)	543 (5.4)	578 (6.0)	628 (3.3)		
(Zn)H ₂ DPX	386 (268)	512 (9.5)	542 (11.7)	576 (12.0)	628 (2.0)		
$(Zn)_2 DPX^{17}$	389 (290)	541 (14.3)		576 (13.2)			
(Ga-OMe)H ₂ DPX	388 (269.4)	510 (8.4)	542 (11.4)	580 (10.4)	628 (1.4)		
H ₄ DPB	379 (173.9)	511 (6.3)	540 (2.0)	580 (3.4)	632 (1.8)		
$(Zn)H_2DPB^{41}$	388 (200.0)	518 (4.1)	542 (5.2)	581 (6.8)	633 (0.8)		

^a In CH₂Cl₂ at 298 K.

distance of 10 Å is normally accepted as the crossing point between the two mechanisms,¹³ but this distance may change from spacer to spacer. Numerous groups, including Nocera's,15-20 Guilard's.²¹⁻²⁴ Chang's,²⁵⁻²⁷ and others,²⁸ have prepared different rigid spacers for the synthesis of cofacial bisporphyrin systems. By examining the crystallographically measured Cmeso-Cmeso distances, one can realize that this series (H4DPS (6.3 Å),²⁹ H₄DPO (5.53 Å),^{17,30} H₄DPA (4.94 Å),³¹ H₄DPX (4.32 Å),¹⁷ and H₄DPB (3.80 Å)³⁰) offers a unique opportunity to fine-probe the photophysical data for donor-acceptor bisporphyrin systems in a cofacial orientation. The possibility of estimating the distance where the dominant mechanism switches from Förster to Dexter, less for cofacial bisporphyrin donoracceptors, is unprecedented.

We now wish to report the syntheses of novel bismacrocycle compounds to assemble together a series of cofacial donoracceptor systems, mono-zinc(II) and mono-gallium(III) centers as energy donors, and the free bases as acceptor, along with their corresponding bismetalated derivatives and monoporphyrin

- (14) Valeur, B. Molecular Fluorescence. Principles and Applications; Wiley-VCH: Weinheim, 2002.
- (15) Deng, Y.; Chang, C. J.; Nocera, D. G. J. Am. Chem. Soc. 2000, 122, 410-411.
- (16) Chang, C. J.; Deng, Y.; Heyduk, A. F.; Chang, C. K.; Nocera, D. G. Inorg. Chem. 2000, 39, 959–966. (17) Chang, C. J.; Baker, E. A.; Pistorio, B. J.; Deng, Y.; Loh, Z.-H.; Miller, S.
- Chang, C. J., Baker, E. A., FISOHO, B. J., Deng, T., Lon, Z.-H., Miller, S. E.; Carpenter, S. D.; Nocera, D. G. *Inorg. Chem.* **2002**, *41*, 3102–3109.
 Chang, C. J.; Deng, Y.; Peng, S.-M.; Lee, G.-H.; Yeh, C.-Y.; Nocera, D. G. *Inorg. Chem.* **2002**, *41*, 3008–3016.
 Chang, C. J.; Yeh, C.-Y.; Nocera, D. G. *J. Org. Chem.* **2002**, *67*, 1403– 100, 100 (1997)
- 1406. (20) Chng, L. L.; Chang, C. J.; Nocera, D. G. J. Org. Chem. 2003, 68, 4075-
- 4078
- (21) Lopez, M. A. Ph.D. Thesis, Université de Bourgogne: Dijon, 1990.
- (22) Tardieux, C. Ph.D. Thesis, Université de Bourgogne: Dijon, 1997 (23) Collman, J. P.; Ha, Y.; Guilard, R.; Lopez, M. A. Inorg. Chem. 1993, 32, 1788-1794.
- (24) Brandès, S. Ph.D. Thesis, Université de Bourgogne: Dijon, 1993.
- (25) Chang, C. K.; Kuo, M.-S.; Wang, C.-B. J. Heterocycl. Chem. 1977, 14, 943-945
- (26) Chang, C. K.; Abdalmuhdi, I. J. Org. Chem. 1983, 48, 5388-5390.
 (27) Chang, C. K.; Abdalmuhdi, I. Angew. Chem., Int. Ed. Engl. 1984, 23, 164-
- 165 (28) Collman, J. P.; Tyvoll, D. A.; Chng, L. L.; Fish, H. T. J. Org. Chem. 1995, 60, 1926-1931.
- (29) From molecular modeling MOPAC (AM1).
- (30) Bolze, F.; Gros, C. P.; Drouin, M.; Espinosa, E.; Harvey, P. D.; Guilard, R. J. Organomet. Chem. 2001, 643-644, 89-97.
 (31) Bolze, F. Ph.D. Thesis, Université de Bourgogne: Dijon, 2001.

model compounds. The singlet-singlet energy transfer rate constants ($K_{\rm ET}$) are obtained and are analyzed according to the Förster and Dexter formulations. The limiting distance where one mechanism switches to the other is evaluated (~ 5 to 6 Å). These $K_{\rm ET}$ data are also compared to literature and discussed.

Experimental Section

Materials. 1,8-Bis[(4,4'-diethyl-3,3'-dimethyl-2,2'-dipyrryl)methyl]dibenzothiophene,31 3,3'-diethyl-5,5'-dimethyl-4,4'-dimethyl-2,2'-dipyrrylmethane,³² H₄DPO,¹⁵ H₄DPX,¹⁶ H₄DPB,²⁷ H₄DPA,²⁶ and their metalated derivatives were synthesized using literature methods.^{21,22,24} Unless otherwise stated, all reagents and solvents were used as received. 2-MeTHF was purchased from Aldrich (99+%, anhydrous and under inert gas). GaCl₃ was in 5% solution in CH₃COOH, and the solvent was removed under vacuum prior to use. PTSA (*p*-toluenesulfonic acid) and DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone) were purchased from Aldrich. Column chromatography was performed with neutral alumina (Merck; usually Brockmann Grade III, i.e., deactivated with 6% water) and silica gel (Merck; 70-120 mm) and monitored by thinlayer chromatography (Merck 60 F254 silica gel precoated sheets, 0.2 mm thick) and UV-vis spectrometry.

Apparatus. ¹H NMR spectra were recorded on a Bruker DRX-500 AVANCE spectrometer at the Centre de Spectrométrie Moléculaire de l'Université de Bourgogne. Microanalyses were performed at the Université de Bourgogne on a Fisons EA 1108 CHNS instrument. UVvis spectra were recorded on a Varian Cary 50 spectrophotometer. Mass spectra were obtained in linear mode with a Bruker Proflex III MALDI-TOF mass spectrometer using dithranol as matrix. Emission and excitation spectra were obtained using a double monochromator Fluorolog 2 instrument from Spex. Fluorescence lifetimes were measured on a Timemaster model TM-3/2003 apparatus from PTI. The source was a nitrogen laser with high-resolution dye laser (fwhm \approx 1500 ps), and the fluorescence lifetimes were obtained from deconvolution or distribution lifetimes analysis. Complementary measurements for (Zn)H₂DPA were performed on a picosecond laser system (fwhm = 35 ps) at the University of Ottawa.^{33,34} All samples were prepared under inert atmosphere (in a glovebox, $P_{02} < 1-3$ ppm) by

- (33) Mohtat, N.; Cozens, F. L.; Scaiano, J. C. J. Phys. Chem. B 1998, 102, 7557-7562.
- (34) Cosa, G.; Vinette, A. L.; McLean, J. R. N.; Scaiano, J. C. Anal. Chem. 2002, 74, 6163-6169.

⁽³²⁾ Chong, R.; Clezy, P. S.; Liepa, A. J.; Nichol, A. W. Aust. J. Chem. 1969, 2.229 - 238

dissolution of the different compounds in 2-MeTHF using 1 cm³ quartz cells with septum (298 K) or standard 5 mm NMR tubes (77 K). Three different measurements (i.e., different solutions) have been performed for the photophysical data (quantum yields and lifetimes). The sample concentrations were chosen to correspond to an absorbance of 0.05. Each absorbance value was measured five times for better accuracy for the measurements of the quantum yields. The reference for quantum yield was H₂TPP ($\Phi = 0.11$),^{35–37} and the quantum yield determination for H₂TPP ($\Phi = 0.11$) at 77 K was performed with (Pd)TPP ($\Phi =$ 0.17; 77 K; MCH (methylcyclohexane)) as reference.^{38,39}

H₄DPS. This compound was synthesized according to a modification of the literature.³⁰ Under inert atmosphere, 3,3'-diethyl-5,5'-dimethyl-4,4'-dimethyl-2,2'-dipyrrylmethane (4.62 g; 16 mmol) and 1,8-bis[(4,4'diethyl-3,3'-dimethyl-2,2'-dipyrryl)methyl]dibenzothiophene (5 g; 7.8 mmol) were dissolved in MeOH (1 L, degassed 1 h under argon) and stirred for 30 min in the dark. A solution of PTSA (10 g; 52 mmol) in 200 mL of MeOH was added over a period of 24 h, and the solution was stirred for 24 h. DDQ (4 g) was then added, and stirring was continued for 1 h. The solvent was removed under vacuum, and the solid was dissolved in 200 mL of CH2Cl2. The organic layer was filtered through a pad of alumina (using CH₂Cl₂ as solvent). The second purple band was collected, and the solvent was evaporated. Crystallization in CH₂Cl₂/MeOH afforded a purple solid. Yield: 21% (1.9 g). ¹H NMR (CDCl₃): δ (ppm) 9.82 (s, 4H), 9.63 (s, 2H), 8.82 (m, 2H), 7.95 (m, 4H), 3.82 (m, 16H), 3.38 (s, 12H), 2.35 (s, 12H), 1.64 (t, 12H), 1.58 (t, 12H), -3.68 (s, 2H), -3.75 (s, 2H). Anal. Calcd: C, 80.24; H, 7.09; N, 9.85; S, 2.82. Found: C, 79.41; H, 7.05; N, 9.99; S, 2.83. MS (MALDI-TOF) m/z 1136 (M⁺); calc C₇₆H₈₀N₈S 1136 g mol⁻¹.

General Procedure for the Preparation of Mono-zinc Bisporphyrins. Under argon, 1.5 g of the free base bisporphyrin was dissolved in degassed CH_2Cl_2 (400 mL) and stirred under reflux. A solution of 350 mg of $Zn(OAc)_2$ ·2H₂O in MeOH (50 mL) was then added over a period of 6 h, and the reaction was monitored by UV-vis and TLC (disappearance of the free base bisporphyrin). After the solution was dried, the residue, dissolved in CH₂Cl₂, was purified by chromatography.

 $(Zn)H_2DPS$ and $(Zn)_2DPS$. Chromatographic purification: alumina, CH₂Cl₂/heptane 7:3. The first band was collected as $(Zn)_2DPS$, and the second one was collected as $(Zn)H_2DPS$. After the solvent was removed under vacuum, recrystallization in CH₂Cl₂/heptane afforded purple crystals for each compound.

(**Zn**)H₂**DPS.** Yield: 57% (900 mg). ¹H NMR (CDCl₃): δ (ppm) 9.80 (s, 2H), 9.79 (s, 2H), 9.59 (s, 2H), 8.82 (m, 2H), 7.97 (m, 4H), 3.79 (m, 16H), 3.36 (s, 12H), 2.34 (s, 12H), 1.61 (m, 12H), 1.57 (m, 12H), -3.73 (s, 1H), -3.82 (s, 1H). Anal. Calcd: C, 76.01; H, 6.55; N, 9.33; S, 2.67. Found: C, 76.01; H, 7.05; N, 9.20; S, 2.73. MS (MALDI-TOF) *m*/*z* 1199 (M⁺); calc C₇₆H₇₈N₈SZn 1198 g mol⁻¹. UV-vis data are summarized in Table 1.

(**Zn**)₂**DPS.** Yield: 7% (110 mg). ¹H NMR (CDCl₃): δ (ppm) 9.70 (s, 4H), 9.60 (s, 2H), 8.85 (m, 2H), 7.96 (m, 4H), 3.82 (m, 16H), 3.38 (s, 12H), 2.37 (s, 12H), 1.59 (t, 24H). Anal. Calcd: C, 72.20; H, 6.06; N, 8.86; S, 2.54. Found: C, 72.07; H, 6.26; N, 8.87; S, 2.55. MS (MALDI-TOF) *m*/*z* 1263 (M⁺); calc C₇₆H₇₆N₈SZn₂ 1260 g mol⁻¹.

(Zn)H₂DPO. Chromatographic purification: alumina, CH₂Cl₂/heptane 7:3. The second band was collected, and the solvent was removed under vacuum. Recrystallization in CH₂Cl₂/heptane afforded (Zn)H₂-DPO as purple crystals. Yield: 51% (810 mg). ¹H NMR (CDCl₃): δ (ppm) 9.68 (m, 4H), 9.49 (m, 2H), 8.65 (m, 2H), 7.77 (m, 4H), 3.77 (m, 16H), 3.31 (2s, 12H), 2.36 (2s, 12H), 1.53 (m, 24H), -3.95 (s, 1H), -4.02 (s, 1H). Anal. Calcd: C, 77.04; H, 6.64; N, 9.46. Found:

- (35) Strachan, J.-P.; Gentemann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S.; Holten, D.; Bocian, D. F. J. Am. Chem. Soc. 1997, 119, 11191–11201.
 (36) Gouterman, M. In *The Porphyrins*; Dolphin, D., Ed.; Academic Press: New
- York, 1978; Vol. III, pp 1–165.
- (37) Seybold, P. G.; Gouterman, M. J. Mol. Spectrosc. **1969**, 31, 1–13.
- (38) Harriman, A. J. Chem. Soc., Faraday Trans. 1980, 76, 1978–1985.
 (39) Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochemistry, 2nd ed.; Marcel Dekker: New York, 1993.

Scheme 1

C, 76.71; H, 6.89; N, 9.19. MS (MALDI-TOF) m/z 1183 (M⁺); calc C₇₆H₇₈N₈OZn 1183 g mol⁻¹.

(**Zn**)**H**₂**DPX.** Chromatographic purification: alumina, CH₂Cl₂/heptane 8:2. The second band was collected, and the solvent was removed under vacuum. Recrystallization in CH₂Cl₂/heptane afforded (Zn)H₂DPX as purple crystals. Yield: 47% (740 mg). ¹H NMR (CDCl₃): δ (ppm) 9.10 (s, 1H), 9.00 (s, 1H), 8.50 (s, 2H), 8.40 (s, 2H), 7.86 (d, 2H), 7.23 (m, 2H), 6.99 (d, 2H), 4.14 (m, 4H), 4.14 (m, 4H), 3.55 (m, 4H), 3.33 (m, 4H), 2.26 (m, 12H), 2.21 (s, 6H), 1.70 (m, 12H), 1.40 (m, 12H), -7.07 (s, 1H), 7.23 (s, 1H). Anal. Calcd: C, 77.33; H, 6.90; N, 9.13. Found: C, 77.67; H, 6.48; N, 8.42. MS (MALDI-TOF) *m*/*z* 1225 (M⁺); calc C₇₉H₈₄N₈OZn 1225 g mol⁻¹.

General Procedure for the Preparation of Mono-gallium Bisporphyrin. After acetic acid was removed under vacuum, benzonitrile (40 mL), CH₃COONa (0.82 mg), and mono-zinc bisporphyrin (400 mg) were added to GaCl₃ (1.40 mL, 5% in acetic acid). The mixture was refluxed, and the reaction was monitored by UV–vis (disappearance of the mono-zinc bisporphyrin, ~90 min). The solvent was removed under vacuum. CH₂Cl₂ (200 mL) and HCl 6 M (50 mL) were added, and the solution was stirred vigorously for 30 min. The organic layer was extracted, washed, and dried over MgSO₄. The solvent was removed to yield a dark solid, which was redissolved in CH₂Cl₂ and filtered through a pad of alumina (CH₂Cl₂/MeOH produced a pure mono-gallium derivative as a light purple solid.

(Ga-OMe)H₂DPS. Yield: 53% (220 mg). ¹H NMR (CDCl₃): δ (ppm) 9.88 (m, 2H), 9.76 (m, 2H), 9.60 (m, 2H), 8.84 (m, 2H), 8.02

Scheme 3

(Ga-OMe)H₂DPS, (Ga-OMe)H₂DPO, (Ga-OMe)H₂DPX

(m, 4H), 3.80 (m, 16H), 3.37 (s, 12H), 2.30 (m, 12H), 1.60 (m, 24H), -3.64 (2s, 3H), -3.78 (s, 1H), -3.85 (s, 1H). Anal. Calcd: C, 74.81; H, 6.60; N, 9.06; S, 2.59. Found: C, 74.33; H, 6.42; N, 8.92; S, 2.44. MS (MALDI-TOF) m/z 1205 (M⁺ – OMe); calc C₇₆H₇₉GaN₈S 1204 g mol⁻¹.

(Ga–OMe)H₂DPO. Yield: 47% (195 mg). ¹H NMR (CDCl₃): δ (ppm) 9.80 (m, 2H), 9.68 (m, 2H), 9.51 (m, 2H), 8.66 (m, 2H), 7.80 (m, 4H), 3.75 (m, 16H), 3.32 (m, 12H), 2.37 (m, 12H), 1.53 (m, 24H), -3.95 (s, 1H), -4.02 (s, 1H), -4.00 (2s, 3H). Anal. Calcd: C, 75.79; H, 6.69; N, 9.18. Found: C, 76.70; H, 6.89; N, 9.18. MS (MALDI-TOF) m/z 1188 (M⁺ – OMe); calc C₇₆H₇₉GaN₈O 1188 g mol⁻¹.

(Ga–OMe)H₂DPX. Yield: 33% (135 mg). ¹H NMR (CDCl₃): δ (ppm) 9.10 (s, 1H), 9.00 (s, 1H), 8.50 (s, 2H), 8.40 (s, 2H), 7.86 (d, 2H), 7.23 (m, 2H), 6.99 (d, 2H), 4.14 (m, 4H), 4.14 (m, 4H), 3.55 (m, 4H), 3.33 (m, 4H), 2.26 (m, 12H), 2.21 (s, 6H), 1.70 (m, 12H), 1.40 (m, 12H), -3.90 (s, 3H), -6.59 (s, 1H), 7.20 (s, 1H). Anal. Calcd: C, 76.12; H, 6.95; N, 8.88. Found: C, 75.97; H, 7.06; N, 8.42. MS (MALDI-TOF) *m*/*z* 1230 (M⁺ – OMe); calc C₇₉H₈₅GaN₈ 1230 g mol⁻¹.

Results

Synthesis. The list of investigated compounds is shown in Scheme 1. The free bases were prepared according to established procedures,⁴⁰ except for H₄DPS. The latter was synthesized using a modified procedure as shown in Scheme 2. This more

convenient and efficient synthetic procedure reduces the number of purification steps as previously reported.³⁰

The general synthesis of the monometalated bisporphyrins is shown in Scheme 3 and proceeds first by incorporation of a zinc(II) cation into one of the porphyrin macrocycles, providing one series of donor–acceptor systems. A second metalation with gallium trichloride leads to heterobimetallic Zn–Ga bisporphyrins. Subsequently, the use of acid allows one to selectively remove all residual zinc(II) ion from the bismacrocycles, giving access to a second family of donor–acceptors. This two-step procedure is necessary as insertion of the gallium atom into the free base was unsuccessful in producing high yields of the monometalated product.⁴¹

The MALDI-TOF technique is well suited for the characterization of all investigated molecules. Considering the (Ga– OMe) porphyrin spectra, the data indicate the absence of the molecular ion peaks, but rather show fragments consistent with the targeted molecules that have lost the OMe fragment. This result illustrates the rather fragile Ga–OMe bond.

Absorption Spectra. Table 1 summarizes the UV–vis data for all investigated porphyrin compounds, for which the Soret-

⁽⁴⁰⁾ Kadish, K. M., Smith, K. M., Guilard, R., Eds. *The Porphyrin Handbook*; Academic Press: New York, 2000.

⁽⁴¹⁾ Guilard, R.; Lopez, M. A.; Tabard, A.; Richard, P.; Lecomte, C.; Brandès, S.; Hutchison, J. E.; Collman, J. P. J. Am. Chem. Soc. 1992, 114, 9877– 9889.

Figure 1. UV-vis spectra of (A) $H_2P \times 2$ as compared to the free base bisporphyrins H_4DPS , H_4DPO , and H_4DPX and (B) (Zn)P $\times 2$ as compared to the corresponding bis-zinc(II) bisporphyrins (298 K, CH₂Cl₂).

Figure 2. UV-vis spectra of $(H_2P + (M)P)/2$ as compared to the monometalated bisporphyrins $(M)H_2DPS$, $(M)H_2DPO$, and $(M)H_2DPX$ where (A) M = Zn and (B) M = Ga-OMe (298 K, CH_2Cl_2).

and Q-bands are characterized. Figure 1 shows the comparison between the UV-vis spectra for H₄DPO, H₄DPS, and H₄DPX with H₂P, and (Zn)₂DPO, (Zn)₂DPS, and (Zn)₂DPX with (Zn)P, where clear discrepancies are shown. The most remarkable feature is the fact that the absorption spectra for the monoporphyrin and bisporphyrin species are not superimposable.^{25,42} A dependence of the Soret band λ_{max} and bandwidth is observed and varies as P > DPS > DPO > DPA > DPX > DPB for λ_{max} (Table 1) and in reverse for the bandwidth. This trend is in agreement with variable internacrocycle interactions due to the increase of the $C_{meso}-C_{meso}$ distance (DPB $\,<$ DPA $\,<$ DPA $\,$ < DPO < DPS), but there was no splitting of the band due to excitonic coupling. The same observation and conclusion are made for the donor-acceptor bisporphyrin series (both Zn/H₂ and Ga/H_2 as shown in Figure 2) where the comparison is made with the 1:1 spectral algebraic sum of (Zn)P and H₂P (and (Ga-OMe)P and H₂P) monoporphyrins. At 77 K, the spectra of $(Zn)H_2DPS$ and $(Zn)H_2DPO$ are better resolved. Moreover, the half sum of the bis-free base and bis-zinc(II) bisporphyrin spectra almost superimpose the spectra of the corresponding monometalated bisporphyrins (see Supporting Information). This feature indicates that the interporphyrin interactions for both spacers are rather weak. In comparison, the absorption spectra for (Zn)H₂DPA, (Zn)H₂DPX, and (Zn)H₂DPB are not resolved at low temperature due to the strong interaction between the two chromophores.

Fluorescence. Table 2 summarizes the fluorescence spectroscopic (λ_{max}) and quantum yield data (Φ_F), along with some other relevant data, and Figure 3 shows typical examples of fluorescence spectra. The fact that the excitation spectra superimpose the absorption spectra confirms the identity of the fluorescence. The quantum yields for H₂P, H₄DPS, and H₄DPO, as well as for (Zn)P, (Zn)₂DPS, and (Zn)₂DPO, respectively, compare favorably, indicating the absence of strong intramolecular interactions in the excited state. Conversely, for all of the DPA, DPX, and DPB systems, the corresponding Φ_F values decrease as the chromophores get closer to each other (C $_{meso} C_{meso}$ distance: DPB < DPX < DPA). Those results are consistent with the presence of stronger interporphyrin interactions. At first glance, DPS and DPO behave similarly, and DPA, DPX, and DPB form a different series of bis-chromophores. The fluorescence spectra for the monometalated bisporphyrins show a drastic decrease in relative intensity for the zinc(II) porphyrin emission versus the free base fluorescence, as illustrated in Figures 3 and 4. The weak 0-0 fluorescence peak is barely perceptible in the spectra, even at 77 K, due to a singlet-singlet energy transfer from the zinc(II) porphyrin to the free base, which is now addressed in more detail.

Energy Transfer. The energy transfer rate (K_{ET}) from the photoexcited metal (Zn or Ga) porphyrin to the free base porphyrin subunit in each momometalated bisporphyrin was assessed using picosecond fluorescence spectroscopy. The photophysical data are analyzed according to the energy transfer

⁽⁴²⁾ Chang, C. K. J. Heterocycl. Chem. 1977, 14, 1285-1288.

Table 2. Luminescence Data for the Mono- and Bisporphyrins^a

comp	ound	quantum	yields ^d	λ_{\max}	(nm) ^e
macrocycle	metal or H	298 K	77 K	298 K	77 K
Р	2H Zn ^b Ga ^b	0.0892 0.0214 0.0173	0.0862 0.0266 0.0541	629, 696 580, 635 581, 637	623, 690 581, 639, 721 579, 637, 718
DPS	$\begin{array}{c} 4\mathrm{H} \\ \mathrm{Zn}, 2\mathrm{H}^c \\ 2\mathrm{Zn}^b \\ \mathrm{Ga}, 2\mathrm{H}^c \end{array}$	0.0887 0.1070 0.0203 0.0788	0.0838 0.0909 0.0226 0.1038	629, 697 583, 628, 697 581, 636 582, 629, 697	623, 689 585, 622, 689 583, 643, 720 582, 622, 689
DPO	$\begin{array}{c} 4\mathrm{H} \\ \mathrm{Zn}, 2\mathrm{H}^c \\ 2\mathrm{Zn}^b \\ \mathrm{Ga}, 2\mathrm{H}^c \end{array}$	0.0937 0.0989 0.0294 0.0909	0.0786 0.0639 0.0347 0.0643	628, 697 631, 697 580, 635 628, 697	623, 691 581, 622, 690 584, 643, 722 621, 698
DPA	4H Zn, $2H^c$	0.020^{30} 0.1070	0.044^{30} 0.0882	634 ³⁰ 585, 630, 698	624 ³⁰ 620, 688
DPX	$\begin{array}{c} 4\mathrm{H} \\ \mathrm{Zn}, 2\mathrm{H}^c \\ 2\mathrm{Zn}^b \\ \mathrm{Ga}, 2\mathrm{H}^c \end{array}$	0.0361 0.0190 0.0115 0.0666	0.0643 0.0707 0.0234 0.0271	635, 701 587, 641, 704 584, 643 588, 639, 705	637, 702 588, 639, 707 595, 649, 721 588, 638, 708
DPB	$\begin{array}{c} 4\mathrm{H} \\ \mathrm{Zn}, 2\mathrm{H}^c \\ 2\mathrm{Zn}^b \end{array}$	0.0040^{30} 0.053 0.006	$\begin{array}{c} 0.012^{30} \\ 0.0392 \\ 0.0108 \end{array}$	641 ³⁰ 623, 690 643	636 ³⁰ 617, 693 607, 659, 733

^{*a*} In 2-MeTHF, $\lambda_{exc} = 500$ nm, the reference for quantum yield was H₂TPP 0.11,^{35–37} the quantum yield for H₂TPP (0.11) at 77 K was verified with (Pd)TPP (0.17; 77 K; MCH) as a reference.^{38,39} ^{*b*} Excitation 540 nm.^{*c*} Total quantum yield of the fluorescence and 85% of the absorbance are due to the free base porphyrin. ^{*d*} The uncertainties of the quantum yields are ±10%. ^{*e*} The uncertainties of the λ_{max} are ±1 nm.

Figure 3. Fluorescence spectra of (Zn)₂DPS, (Zn)H₂DPS, and H₄DPS in 2-MeTHF (A, 298 K; B, 77 K).

Figure 4. Emission spectrum of $(Zn)H_2DPS$ in 2-MeTHF at 298 K (inset: the weak fluorescence at 585 nm arising from the zinc(II) porphyrin donor).

process as described in Scheme 4. Because of the difficulty in measuring Φ_F accurately for the donor chromophore, the fluorescence lifetimes (τ_F) are studied (Table 3). In fact, the absorbance related to the Zn(II)P fragment is difficult to evaluate

at a given wavelength (the Zn(II)P fragment absorbs in the same region as the H₂P chromophore), and its emission is too weak (see inset in Figure 4). The K_{ET} values are calculated using eq 1:

$$K_{\rm ET} = \left(\frac{1}{\tau_{\rm F}} - \frac{1}{\tau_{\rm F}^0}\right) \tag{1}$$

750

where $\tau_{\rm F}^0$ is the fluorescence lifetime of closely related bismacrocycles where no energy transfer occurs. The zinc(II) models are the corresponding (Zn)₂DPS, (Zn)₂DPO, (Zn)₂DPX, (Zn)₂DPB, and, for (Zn)₂DPA, (Zn)P. For the gallium(III) series, (Ga–OMe)P is preferred: the bis-gallium series were excluded from this work as they all exhibit a double fluorescence (two $\lambda_{\rm max}$ and two $\tau_{\rm F}$).^{31,43} Table 3 summarizes the $\tau_{\rm F}$, $\tau_{\rm F}^0$, and $K_{\rm ET}$ data. We were not able to reproduce the data, notably (Zn)H₂DPA and (Zn)H₂DPB, obtained by Osuka and collabora-

⁽⁴³⁾ Harvey, P. D.; Proulx, N.; Martin, G.; Drouin, M.; Nurco, D. J.; Smith, K. M.; Bolze, F.; Gros, C. P.; Guilard, R. *Inorg. Chem.* 2001, 40, 4134–4142.

Donor = $(Zn^{II})P$ Acceptor = H_2P

Table 3. Fluorescence Lifetime and Singlet–Singlet Energy Transfer Rate Constants for the Bisporphyrins^a

compound		lifetim	e (ns) ^b	$K_{\rm ET}$ (ns ⁻¹)	
macrocycle	metal or H	298 K	77 K	298 K	77 K
Р	2H Zn Ga	17.3 1.70 1.84	23.3 1.94 3.2		
DPS	4H Zn, 2H ^c 2Zn Ga, 2H ^c	18.0 0.19 1.95 0.24	$23.6^{30} \\ 0.19 \\ 1.85 \\ 0.20$	4.7 3.7	4.6 4.8
DPO	4H Zn, 2H ^c 2Zn Ga, 2H ^c	18.5 0.18 1.69 0.09	20.7 ³⁰ 0.16 2.01 0.16	5.0 11	5.9 6.0
DPA	4H Zn, 2H ^c	13.7 0.14	24 ³⁰ 0.13	6.4	7.2
DPX	4H Zn, 2H ^c 2Zn Ga, 2H ^c	14.1 0.10 1.73 0.14	$ \begin{array}{r} 17.0^{30} \\ 0.09 \\ 1.94 \\ 0.14 \\ \end{array} $	9.8 6.4	10.9 7.0
DPB	4H Zn, 2H ^c 2Zn	11.7 0.05 0.63	17.0^{30} 0.06 1.80	20.842	15.4

 $[^]a$ In 2-MeTHF. b The uncertainties in lifetime are $\pm 10\%.~^c$ Lifetime for metalated porphyrin.

tors.⁴⁴ Longer τ_F 's were found despite the fact that the measurements were reproduced several times on two different instruments (described in the Experimental Section). In addition, the K_{ET} values were also estimated using the Φ_F data (eq 2):

$$K_{\rm ET} = \left(\frac{1}{\Phi_{\rm F}} - \frac{1}{\Phi_{\rm F}^0}\right) \times \frac{\Phi_{\rm F}^0}{\tau_{\rm F}^0} \tag{2}$$

where $\Phi_{\rm F}$ is the fluorescence quantum yield, and $\tau_{\rm F}^0$, $\Phi_{\rm F}^0$ are the fluorescence lifetime and quantum yield of closely related bismacrocycles where no energy transfer occurs. These data agree within the uncertainties of the $K_{\rm ET}$ values calculated according to eq 1.⁴⁵ The key features are as follows: (1) the 77 K data are considered more accurate as the fluorescence signals become sharper inducing an easier discrimination of the (Zn)P

contribution from the overall decay traces, (2) the $\tau_{\rm F}$ data follow $\Phi_{\rm F}$ trends (as $\tau_{\rm F}$ decreases, $\Phi_{\rm F}$ decreases as well), (3) there is a dependence of $K_{\rm ET}$ on the C_{meso}-C_{meso} distance (as the distance decreases, $K_{\rm ET}$ increases), and (4) within the uncertainty, $K_{\rm ET}$ is not sensitive to the nature of the metal (Zn vs Ga).

Discussion

As dipole–dipole interaction (Förster) and exchange (Dexter) mechanisms are possible for singlet–singlet energy transfer, the $K_{\rm ET}$ data are analyzed according to the Förster^{11,12} (eq 3)¹⁴ and Dexter¹⁰ (eq 4)¹⁴ formulations

$$K_{\rm ET}^{\rm Förster} = k_{\rm D} R_{\rm F}^6 \left(\frac{1}{R}\right)^6 \tag{3}$$

$$K_{\rm ET}^{\rm Dexter} = \frac{2\pi}{h} K J' \exp\left(\frac{-2R}{L}\right) \tag{4}$$

where $k_{\rm D}$ is the emission rate constant for the donor, $R_{\rm F}$ is the Förster radius, that is, the distance at which transfer and spontaneous decay of excited donors are equally probable, R is the distance between the two macrocycles, J' is the integral overlap, K is an experimental constant, and L is the average Bohr radius (L = 4.8 for porphyrin^{7,46}). Simulated graphs (using arbitrary values for k_D , R_F , J', and K) are shown in Figure 5. The straight lines represent what is expected for an energy transfer rate operating exactly (and uniquely) according to a Förster (graph A) and Dexter (graph B) mechanism. It is noteworthy to state that the line in the Förster equation must pass through the origin (0,0). The curved lines in each of these graphs are simulated lines obtained with eqs 3 (Förster) or 4 (Dexter), but transposed onto the other graph (i.e., Förster equation plotted against Dexter formulation and vice versa). From these graphs, the zones where the Förster and Dexter mechanisms are dominant (bold lines) are easily distinguishable. The experimental $K_{\rm ET}$ data are plotted against $1/R^6$ and exp(-2R/4.8) at 77 K in Figure 6. These graphs show striking similarities to those of Figure 5, providing clear evidence that both mechanisms operate for these five donor-acceptor bisporphyrins. At 298 K, a similar behavior is noted (Supporting Information), but the 77 K $\tau_{\rm F}$ data are of better quality.

The energy transfer for (Zn)H₂DPS and (Zn)H₂DPO proceeds dominantly according to a Förster mechanism, while the transfer in (Zn)H₂DPB, (Zn)H₂DPX, and (Zn)H₂DPA occurs mainly via a Dexter mechanism. This observation is consistent with the relative presence of intramolecular porphyrin-porphyrin interactions as deduced from the spectroscopic and photophysic data. The change of dominant mechanism for energy transfer in this series occurs between (Zn)H₂DPO and (Zn)H₂DPA. By extrapolating a line down to $K_{\text{ET}} = 0$ for the Dexter plot (Figure 6, graph B), we located the critical R_0 distance where the Dexter process no longer operates, between 5 and 6 Å, taking into account the uncertainties. Again, the Cmeso-Cmeso distance is 4.94 and 5.53 Å, for DPA and DPO, respectively, a range that overlaps with the graphically estimated R_0 value. In that respect, the closest study related to this investigation is the work reported by Osuka et al.44 In this previous work, a large series of Znporphyrin/spacer/free porphyrin donor-acceptor systems where

⁽⁴⁴⁾ Osuka, A.; Maruyama, K.; Yamazaki, I.; Tamai, N. Chem. Phys. Lett. 1990, 165, 392–396.

⁽⁴⁵⁾ The main conclusion of this work is that the Förster and Dexter mechanisms switch at a given distance (~5-6 Å). These results have just been reproduced by ongoing investigations on T₁-T₁ energy transfers in (Pd)H₂- and (ZnPd)-bisporphyrins. In this case, only the Dexter mechanism operates at the triplet state where, at a given distance, an "on/off situation" should occur. This "critical" value is the same as that determined in this work, and this investigation will be reported in due course.

⁽⁴⁶⁾ Fillers, J. P.; Ravichandran, K. G.; Abdalmuhdi, I.; Tulinsky, A.; Chang, C. K. J. Am. Chem. Soc. 1986, 108, 417–424.

Figure 5. Qualitative theoretical plots for $K_{\rm ET}$ versus $1/R^6$ (Förster, graph A) and $K_{\rm ET}$ versus $\exp(-2R/4.8)$ (Dexter, graph B). The solid lines correspond to hypothetical situations where the Förster mechanism operates, while the dotted lines are hypothetical situations for the Dexter mechanism.

Figure 6. Plot of $K_{\rm ET}$ versus $1/R^6$ and $K_{\rm ET}$ versus exp(-2R/4.8). The straight lines are associated with the molecules operating with the Förster (graph A) and Dexter (graph B) mechanism, respectively.

the spacers are various benzenyl (para- and meta-), naphthalenyl, anthracenyl, biphenyl, alkyl, and rigid polycyclic saturated fragments were investigated. A center-to-center distance dependence on the KET was reported and interpreted with a Förster mechanism, which is consistent with the rather long distances between the donor and acceptor induced by these spacers. The (Zn)H₂DPA bismacrocycle, which is common in both works, is a donor-acceptor system that exhibits a $K_{\rm ET}$ located at the limit between the Förster and Dexter regions according to our results. However, this system exhibits the fastest rate in Osuka's work, which places a data point at the limit of a plot $\ln(K_{\rm ET})$ versus center-to-center distance. Any small deviation from linearity could have been missed taking into account the uncertainties.

Table 4^{47-50} compares singlet-singlet K_{ET} data for selected bisporphyrin systems containing the zinc(II) porphyrin-free base pair (the Supporting Information⁴⁷⁻⁵⁷ reports the complete list⁵⁸).⁷ The three main features are as follows: (1) the fastest rates are observed for rigidly held donor-acceptor systems, (2) as the spacer length increases, $K_{\rm ET}$ decreases, consistent with the Förster theory, and (3) the presence of aromatics at the meso-

- (49) Jensen, K. K.; van Berlekom, S. B.; Kajanus, J.; Maartensson, J.; Albinsson, B. J. Phys. Chem. A 1997, 101, 2218-2220.
- Yang, S. I.; Lammi, R. K.; Seth, J.; Riggs, J. A.; Arai, T.; Kim, D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Phys. Chem. B **1998**, 102, 9426–9436. (50)

position of the porphyrin macrocycle strongly promotes energy transfer. Lindsey and collaborators have previously discussed this effect where the meso-substituted porphyrins have energy transfer rate constants greater than those of the β -substituted ones. 35 The HOMO for the meso porphyrins exhibits an $a_{2\mathrm{u}}$ symmetry MO in which strong electronic density is present at the meso carbon, whereas the HOMO for β -substituted ones shows an a_{1u} symmetry MO where a node is located exactly at these carbons.^{36,59-61} In comparison to the collected data of Table 4, the value calculated for the cofacial bisporphyrin, $(Zn)H_2DPB$ ($K_{ET} = 21 \text{ ns}^{-1}$), is the fastest one in the β -substituted porphyrin series where the spacer is connected at

- (51) Osuka, A.; Nagata, T.; Kobayashi, F.; Zhang, R. P.; Maruyama, K.; Mataga, N.; Asahi, T.; Ohno, T.; Nozaki, K. Chem. Phys. Lett. 1992, 199, 302 308
- (52) Gust, D.; Moore, T. A.; Moore, A. L.; Leggett, L.; Lin, S.; DeGraziano, J. M.; Hermant, R. M.; Nicodem, D.; Craig, P.; Seely, G. R.; Nieman, R. A. J. Phys. Chem. 1993, 97, 7926-7931.
- (53) Gust, D.; Moore, T. A.; Moore, A. L.; Kang, H. K.; DeGraziano, J. M.; Liddell, P. A.; Seely, G. R. J. Phys. Chem. **1993**, 97, 13637–13642.
- (54) Kawabata, S.; Yamazaki, I.; Nishimura, Y.; Osuka, A. J. Chem. Soc., Perkin Trans. 2 1997, 479–484.
- (55) Strachan, J.-P.; Gentemann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S.; Holten, D.; Bocian, D. F. *Inorg. Chem.* **1998**, *37*, 1191–1201.
- (56) Asano-Someda, M.; Kaizu, Y. *Inorg. Chem.* 1996, *39*, 2303–2311.
 (57) Hungerford, G.; Van der Auweraer, M.; J.-C., C.; Heitz, V.; Sauvage, J. P.; Pierre, J.-L.; Zurita, D. *Chem.-Eur. J.* 1999, *5*, 2089.
 (58) In this list, (Zn)H₂DPA and related compounds from Osuka's work have
- been omitted. We have not been able to reproduce the data. (59) Spellane, P. J.; Gouterman, M.; Antipas, A.; Kim, S.; Liu, Y. C. Inorg.

- (59) Speliane, F. J., Gouterman, M., Anupas, A., Kim, S., Eu, T. C. Morg. *Chem.* 1980, *19*, 386–391.
 (60) Shelnutt, J. A.; Ortiz, V. *J. Phys. Chem.* 1985, *89*, 4733–4739.
 (61) Fletcher, J. T.; Therien, M. J. *J. Am. Chem. Soc.* 2002, *124*, 4298–4311.
 (62) Seth, J.; Palaniappan, V.; Wagner, R. W.; Johnson, T. E.; Lindsey, J. S.; Bocian, D. F. *J. Am. Chem. Soc.* 1996, *118*, 11194–11207.

⁽⁴⁷⁾ Hsiao, J.-S.; Krueger, B. P.; Wagner, R. W.; Johnson, T. E.; Delaney, J. K.; Mauzerall, D. C.; Fleming, G. R.; Lindsey, J. S.; Bocian, D. F.; Donohoe, R. J. J. Am. Chem. Soc. **1996**, 118, 11181–11193.

 ⁽⁴⁸⁾ Osuka, A.; Tanabe, N.; Kawabata, S.; Yamazaki, I.; Nishimura, Y. J. Org. Chem. 1995, 60, 7177-7185.

^a To our knowledge, this is the fastest rate in bisporphyrin systems.

the meso-position. The short distance between the macrocycles $(C_{meso}-C_{meso})$ is certainly responsible for these relatively fast rates.

Conclusion

Literature works brings clear evidence that very efficient energy transfer can occur at long distances for meso-substituted porphyrins because the meso carbons exhibit a large electronic density. The energy transfer proceeds via a through-bond mechanism in such cases.⁸ In β -substituted porphyrins, the weak electronic density at the meso carbons prevents any efficient energy transfer through the chemical bonds, explaining the slower rates.^{36,59–61} In cofacial β -substituted bisporphyrins, the through-space transfer occurs efficiently via Dexter or Förster mechanisms. However, for β -substituted species, intermacrocycle π -orbital overlaps are required for efficient energy transfer via Dexter's mechanism. From all of these findings, cofacial meso-substituted bisporphyrins should offer an enhanced throughbond process, as well as the mechanism operating through short π -orbital overlaps. In such a case, it is anticipated that the overall rates for singlet-singlet energy transfer will be larger than that presented in this series.

Acknowledgment. P.D.H. thanks the NSERC (Natural Sciences and Engineering Research Council of Canada) for support. The support of the CNRS (R.G., UMR 5633) is also gratefully acknowledged. Marcel Soustelle (LIMSAG) is acknowledged for synthetic contributions. Prof. J. C. Scaiano and A. Aspee (University of Ottawa) are thanked for their kind help with picosecond laser fluorescence measurements.

Supporting Information Available: Table containing literature data for singlet-singlet energy transfer rate for zinc(II) porphyrin-free base diads. UV-vis spectra for H₄DPS, (Zn)H₂-DPS, and (Zn)₂DPS in 2-MeTHF at 77 K. Graph of $K_{\rm ET}$ versus $1/R^6$ and exp(-2R/4.8) for all five donor-acceptor systems in 2-MeTHF at 298 K (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA0379823